
Replication of
“Real-time Scene Text Localization and Recognition” and

“Text Localization in Real-world Images using Efficiently Pruned Exhaustive
Search”

Daniel DeTone
EECS 592, W14

Department of Computer Science and Electrical Engineering
University of Michigan at Ann Arbor, MI

ddetone@umich.edu

Abstract

I present a replication of two papers: “Real-time Scene
Text Localization and Recognition” [10] and “Text Local-
ization in Real-world Images using Efficiently Pruned Ex-
haustive Search” [9]. The combination of these two papers
by Neumann et. al. present a text localization system for
scene images. [10] presents a method for generating po-
tential character regions in the image, and [9] presents a
method for combining these regions into words. Overall,
even with the combination of two papers, this was a difficult
project to replicate. This was to be expected to a certain ex-
tent as they are both papers from conference proceedings.
In short, I was able to implement the majority of both pa-
pers, with the exception of a few portions of their system.
I did however, gain great insights into the underlying al-
gorithms while studying the system’s vague details. In this
paper I present potentially novel pseudocode for a key algo-
rithm in [9], tips for which data structures to use for imple-
mentation of this system, and the identity of the key compo-
nents of the papers which are required for full replication.
Lastly, I present qualitative experimental results which I ob-
tained without the aforementioned key details.

1. Introduction

Scene text localization and recognition is a challenging,
open problem with many practical applications. Examples
of practical applications of such systems include helping vi-
sually impared people, automated translation of text writ-
ten in a foreign language, and automated indexing of im-
ages based on the textual content (e.g. Google Street View,
Flickr, etc) [11].

Performing text recognition in scene text images is a

more difficult problem than that typically seen in the Op-
tical Character Recognition (OCR) setting, which is largely
considered a mature field. This is because OCR systems are
designed primarily for document images such as those from
a flatbed scanner, where the text has a high contrast with
the background and is horizontally algined. These systems
tend to perform poorly on scene text images (uncontrolled
images), where the input can contain blur, low resolution,
and character deformations. OCR systems typcially rely on
brittle techniques such as binarization, where the first stage
of processing is a simple thresholding operation used to di-
vide text and non-text pixels. It is for these reasons that text
must first be localized in the image as a preprocessing step
for OCR.

In this paper, I attempted replication of the text localiza-
tion portion of [10]. In order to do so, it was also necessary
for me to implement [9]. As these are both short confer-
ence proceedings, replication was difficult. This is under-
standable as the authors only have a short space to describe
their work. There were a few critical details left out of the
original papers, thus I was unable to fully replicate the re-
sults presented in [10]. Instead of full replication, this paper
presents a compliation of my findings which should serve as
supplementary material to another who wishes to replicate
[10] and/or [9]. The primary contributions of this replica-
tion study are:

1. Psuedocode for potentially novel implementation of
efficiently pruned exhaustive search, the critical algo-
rithmic component in [9]

2. Detailed explaination of the concepts in [9] and [10],
with illustrations to help simplify the reader’s under-
standing of combining these works

3. The identification of details which are required from

1



the author for complete replication of [10] and [9]

2. Text Localization and Recognition State of
the Art

State of the art scene text localization systems are gener-
ally split into two groups: the sliding window approach and
the connected components approach.

Sliding window approaches [7], [6], and [13] limit the
search to a subset of image rectangles. The primary strength
of these methods are their robustness to noise and blur,
because because they exploit features created throughout
the entire region of interest. The primary drawback of
these methods are their efficiency: the number of rectan-
gles which need to be evaluated grows very rapidly when
text with different scale, aspect ratio and rotations are con-
sidered.

The connected components approach is recently more
popular [4], [5] and [12]. These methods search for indi-
vidual characters by grouping pixels which possess similar
characteristics into the same group. The primary drawback
of these methods are their sensitivity to clutter and occlu-
sions which change the connected component structre. The
advantage to these methods are that their complexity typ-
ically does not depend on properties of the text such as a
variety of scales, orientations and fonts. They also provide
a character segmentation which is useful in the OCR stage.

The best performing end-to-end scene text detection and
recognition system is [1]. In this method, text line region
hypotheses are generated using three efficient localization
methods tuned for high recall. Then, a cascade of classi-
fiers are used make character proposals from the text line
region hypotheses. Next, leveraging recent deep learning
developments in machine learning, [1] trains a deep neu-
ral network for character classification. Finally, datacenter-
scale distributed language modelling is used to synthesize
the most probable letter combination. This system outper-
forms all previously reported results, more than halving the
error rate on multiple benchmarks.

3. Text Localization Overview
3.1. Extremal Regions (ERs)

An extremal region is a region of pixels r in a scalar
channel C for which every boundary pixel surrounding the
region r have strictly higher values than the region r itself.
We denote the threshold at which the outer boundary pixels
have a strictly higher value than as ✓. This is show in Figure
1.

The primary benefit of segmenting the text characters as
extremal regions is their efficiency. Because of the inherent
tree struture as shown in Figure 1, one can incrementally
computer features of the region as the tree is traversed. This
allows for calculation of region features in O(N), where N

is the number of pixels in the image. This is a unique feature
of extremal regions which makes them especially appealing
for real-time applications.

Figure 1. Inclusion-exlusion of Extremal Regions. This figure
shows a subset of the extremal region tree generated by [10]. As
one traverses down the tree, the threshold ✓ that defines the ex-
tremal regions decreases, creating smaller and smaller extremal
regions. The input is the image in the top-left portion of the figure
containing “ONY”.

3.2. Exhaustive Search

In this section, an overview of the exhuastive search in-
troduced in [9] is presented. Then, psuedocode for the algo-
rithm along with an illustrated example are shown to help
guide the reader to towards an efficient implementation of
this concept is described.

Let E denote the set of ERs (extremal regions) found in
image I. Performing extremal region filtering reduces the
cardinality of the set S of all sequences made up of E from
22

n

to 2n. While this is a great reduction in complexity, it
is still exponential, thus it is unnacceptable for a real-time
text localization system.

We can thus define “upper-bound” verification functions
v̂1, v̂2, ..., v̂n which determine whether sL is either a se-
quence or subsequence of size L letters:

v̂L(sL) = 1 () 9s0 : sL ✓ s0, v(s0) = 1 (1)

Where v is a verification function which is true if its in-
put sequence is an unextendable word. It then follows that
the enumeration of " = {! 2 S : v(!) = 1} can be equiva-
lently defined as finding the set of unextendable sequences:

"1 = {r 2 E|v̂1(r) = 1} (2)

"2 = {(r1, r2)|r1, r2 2 "1, r1 6= r2,

v̂2(r1, r2) = 1}
(3)

"3 = {(r1, r2, r3)|(r1, r2), (r2, r3) 2 "2,

r
i

6= r
j

, 8i, j, v̂3(r1, r2, r3) = 1}
(4)

"n = {(r1, r2, ..., rn)|(r1, r2..., rn�1), (r2,r 3..., rn)

2 "n�1, r
i

6= r
j

, 8i, j, v̂
n

(r1, r2, ..., rn) = 1}
(5)

By formulating the exhaustive search in this way, we can
prevent the combinatorial explosion of enumerating the SL

sets of all sequences of length L. This is possible because
non-text subsquences are excluded without the need to build
a complete sequence.



3.3. Verification Functions

The verification functions (v̂1, v̂2, ..., v̂n) are first intro-
duced in [9]. When posing the text localization problem
in the setting where extremal regions are the character hy-
potheses, as the authors do in [10], the v̂1 function is the cas-
cade of sequential classifiers which classify the extremal re-
gions. These verification function provide a critical function
in that they must be very properly tuned to work properly.
If they are too harsh (e.g. they prune too many functions),
then often the text in the scene will not be detected. If they
are not strong enough, then the computational complexity
grows greatly and often makes text localization intractable.

3.4. Difficulties with Implementation

It is in describing these functions v̂2, ..., v̂n) that the au-
thors Neumann et. al. present the greatest difficulty to a
replication of the their work. This is the major difficulty
which I encountered. For example, in [10], they describe
the rules for the v̂2 with a single sentence: The rules re-
quire that height ratio, centroid angle and region distance
normalized by region width fall within a given interval ob-
tained in a training stage. While these three rules that they
present seem reasonable, a full replication requires, at the
minimum, a short description of what the features were,
how they were determined and labeled, and which learn-
ing algorithm was used. Additionally, a short sentence in
the experiments section of the paper would be very help-
ful. When implementing this portion of the paper, I chose
thresholds manually which seemed to give decent results.

Additionally, in description of their v̂3 verification func-
tion, they provide only a short phrase in parenthesis mutual
vertical distance of the text lines is constrained based on
thresholds in training. I did not understand this phrase, and
was unable to implement the v̂3 verification function. I at-
tempted contact with authors, but have gotten no response.

4. Implementation Tips
4.1. Data structure for Extremal Regionss

First, one must consider memory efficient methods for
storing all the regions r 2 E. Namely, we aim to answer:
what is the minimum amount of data that needs to be stored
to reconstruct after finding "1, "2, ..., "n to form word lines?
The naive approach would be to store the source pixels for
which r contains. While this would still keep the memory
complexity O(cN), where c is the number of channels used
to generate E and N is the number of pixels in the source
image, we can reconstruct r with a smaller footprint. The
three pieces of information we need to encode are:

1. Root pixel location

2. Threshold at which the ER was found

3. The channel used to find the ER

Using this information to store the extremal regions results
in a memory footprint of O(R), where R is the number of
regions which in practice is much smaller than the naive
approach as rarely are extremal regions’ sizes close to one
pixel. To find the connected component from these three
pieces of information, one can use an efficient flood-fill al-
gorithm as implemented in [3] which has linear run-time
efficiency.

This storage also becomes critical when doing compar-
isons of extremal regions, as these are the three character-
istics which must be unique for an extremal region to be
unique. This is discussed further in both section 4.2 and
section 4.3.

4.2. Comparison of Sequences of ERs

One critical component of the exhaustive search is subse-
quence comparison, which become apparent in the iterative
definition 2, especially in 5. In 5 it is neccesary to find the
sequence:

Smid = {(r1, r2, ..., rn�1) \ (r2, r3, ..., rn)} (6)

Where r1, r2, ..., rn are defined in 5. Since the intersection
has n! combinations, where n is the length of each sequence
of ERs, a naive approach making all these comparisons can
be intractable. Instead, if one implements the sequences of
ERs in an ordered set, one can implement linear compari-
son assuming that one has stored each ER according to 4.1.
Binary sort is fast, and can be implemented in O(nlog(n))
time.

4.3. Algorithm for Subsequence Comparison

The naive approach to comparing each sequence to other
in order to generate 5 is to iterate through the elements in "

n

with a nested loop, resulting in O(NM2) runtime complex-
ity, where N is the number of sequences of sequence length
M . One can instead efficiently enumerate the possible se-
quence combinations in 5, by storing element (r

i1) with the
sequence (r

i2, ..., rin) as its key in a multiple element hash
map for each element in "

n

. This results in an efficency
of O(NM). As the authors of [9] did not provide imple-
mentation details for their algorithm, this may be a novel
algorithmic approach to solving the sequence comparison
problem. See Algorithm 1 for more details.

5. Experimental Results
The work of [10] presents and end-to-end scene text

recognition system which both localizes text and performs
recognition of the found text. This replication study focuses
on the localization portion of the system in [10].

As stated on the primary author’s webpage [8], a portion



Algorithm 1: Efficient Subsequences Comparison us-
ing Multi Map Hashing

Data: "2 Set of all pairwise ERs for which
v̂2(r1, r2) = 1

Result: "̂ Set of all enumerated sequences of ERs

initialize: m 2;
while "m�1 is not empty do

intitialize: MultiHashMap;
foreach s

i

= (r
i1, ..., rin) 2 "m do

add key (r
i2, ..., rin) with elt r

i1;
end
foreach s

i

= (r
i1, ..., rin) 2 "m do

if key (r
i1, ..., rin�1) found in MultiHashMap

then
new elt merge(r

found

, (r1, ..., rin));
if v̂

n+1(new elt) then
add to "m+1;

end
end

end
m m+ 1;

end

of the work in [10] was implemented by Lluis Gomez as
part of the developmental OpenCV 3.0 [2]. This code im-
plements the extremal region filtering and sequential clas-
sifier described in Section 3 of [10], and provided the basis
for this replication study. Using this code is straightforward
for those familiar with OpenCV.

The above mentioned code generates a large set of con-
nected components from 9 different scalar channels. To
generate words from these potential characters, on must
form sequences of extremal regions as described in [10].
There was no open source implementation of this work, thus
I implemented it all from scratch using C++. The majority
of the time I spent in replicating this paper was spent imple-
menting 1 in an efficient manner. The two works are repli-
cated, with the exception of the v̂3 function. This function
must be critical for achieving real-time performance, as this
was the biggest difficulty for me. Due to this high compu-
tational time, it was impossible to evalute the algorithm on
the ICDAR 2011 dataset, as the algorithm took too long to
complete on very large images. Figure 5 shows some qual-
itative results of my replication on smaller images. The
entirety of the C++ code which I used was submitted to the
Ctools Drop Box.

References

[1] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven.
Photoocr: Reading text in uncontrolled conditions. In

(a) Full Sequence (b) Subsequence in "3

(c) Hash Element (d) Hash Key

(e) Element to be added (f) Merged Sequence

Figure 2. Addition of sequence to "4. Figure (a) shows the fully
enumerated word !. Figure (b) shows the subsequence in "3 which
may be potentially merged with another element in "3, made up of
the union of sequences in Figure (c) and (d). Figure (c) shows
the sequence used as the hash key. Figure (d) shows the element
stored at the hash key in figure (c) (not unique). Figure (e) is the
element to be added to the union of Figure (c) and (d). Figure (f)
is the merged sequence as the key in Figure (c) was found in the
map.

ICCV, pages 785–792, 2013. 2
[2] G. Bradski. Dr. Dobb’s Journal of Software Tools,

2000. 4
[3] S. V. Burtsev and Y. P. Kuzmin. An efficient

flood-filling algorithm. Computers and Graphics,
17(5):549–561, 1993. 3

[4] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in
natural scenes with stroke width transform. In CVPR,
pages 2963–2970. IEEE, 2010. 2

[5] Y. feng Pan, X. Hou, and C. lin Liu. Text localization
in natural scene images based on conditional random
field, 2009. 2



(a) (b)

(c) (d)

(e) (f)

Figure 3. Text Localization Results. The images on the left hand
side (blue bounding boxes) of this figure represent the output from
my implementation, and the images on the right hand side (red
bounding boxes) represent the output of the original implementa-
tion of [10] and [9].

[6] J. jin Lee, P. hean Lee, C. Koch, and A. Yuille. Ad-
aboost for text detection. In in Natural Scene, Interna-
tional Conference on Document Analysis and Recog-
nition, pages 429–434, 2011. 2

[7] R. Lienhart and A. Wernicke. Localizing and segment-
ing text in images and videos. IEEE Trans. Circuits
Syst. Video Techn., 12(4):256–268, 2002. 2

[8] L. Neumann. Center for machine perception - lukas
neumann @ONLINE, June 2013. 3

[9] L. Neumann and J. Matas. Text localization in
real-world images using efficiently pruned exhaustive
search. In Document Analysis and Recognition (IC-
DAR), 2011 International Conference on, pages 687–
691, IEEE Computer Society Offices, 2001 L Street

N.W., Suite 700 Washington, DC 20036-4928, United
States, sept. 2011. IEEE Computer Society Confer-
ence Publishing Services. 1, 2, 3, 5

[10] L. Neumann and J. Matas. Real-time scene text local-
ization and recognition. In CVPR, pages 3538–3545.
IEEE, 2012. 1, 2, 3, 4, 5

[11] L. Neumann and J. Matas. Scene text localization and
recognition with oriented stroke detection. In 2013
IEEE International Conference on Computer Vision
(ICCV 2013), pages 97–104, California, US, Decem-
ber 2013. IEEE. 1

[12] C. Shi, C. Wang, B. Xiao, Y. Zhang, and S. Gao. Scene
text detection using graph model built upon maxi-
mally stable extremal regions. Pattern Recogn. Lett.,
34(2):107–116, Jan. 2013. 2

[13] K. Wang, B. Babenko, and S. Belongie. End-to-end
scene text recognition. Computer Vision, IEEE Inter-
national Conference on, 0:1457–1464, 2011. 2


