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Figure 8. Synthetic Motion Blur Test Example. Top row: input image applied with varying motion blur effect from kernel size 0 to 10;
middle row: corners and ids detected by OpenCV detector, with detection accuracy [1. 1. 1. 1. 1. 0.125 0. 0. 0. 0. 0. 0. ]; bottom row:
corners and ids detected from the Deep ChArUco, with detection accuracy [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

to detect the 16 ChArUco markers for a fixed set of im-
ages, under increasing blur and lighting changes (synthetic
effects). Then, on real sequences, we estimate the pose of
the ChArUco board based on the Perspective-n-Point algo-
rithm and determine if the pose’s reprojection error is below
a threshold (typically 3 pixels). Below, we outline the met-
rics used in our evaluation.

• Corner Detection Accuracy (accuracy of ChArU-
coNet)

• ChArUco Pose Estimation Accuracy (combined accu-
racy of ChArUcoNet and RefineNet)

A corner is correctly detected when the location is within
a 3-pixel radius of the ground truth, and the point ID is iden-
tified correctly based on ChArUcoNet ID classifier. The
corner detection accuracy is the ratio between the number
of accurately detected corners and 16, the total number of
marker corners. The average accuracy is calculated as the
mean of detection accuracy across 20 images with different
static poses. To quantitatively measure the pose estimation
accuracy in each image frame, we use the mean reprojec-
tion error ✏re as defined below:

✏re =

P
n

i=1 |PCi � ci|
n

, (1)

where P is the camera projection matrix containing intrin-
sic parameters. Ci represents the 3D location of a detected
corner computed from the ChArUco pose, ci denotes the 2d
pixel location of the corresponding corner in the image. n

( 16) is the total number of the detected ChArUco corners.

5.1. Evaluation using synthetic effects
In this section, we compare the overall accuracy of the

Deep ChArUco detector and the OpenCV detector under
synthetic effects, in which case, we vary the magnitude of
the effect linearly. The first two experiments are aimed to
evaluate the accuracy of ChArUcoNet output, without rely-
ing on RefineNet.

In each of our 20 synthetic test scenarios, we start with
an image taken in an ideal environment - good lighting and
random static pose (i.e., minimum motion blur), and gradu-
ally add synthetic motion blur and darkening.

Figure 9. Synthetic Motion Blur Test. We compare Deep
ChArUco with the OpenCV approach on 20 random images from
our test-set while increasing the amount of motion blur.

5.1.1 Synthetic Motion Blur Test

In the motion blur test, a motion blur filter along the hori-
zontal direction was applied to the original image with the
varying kernel size to simulate the different degrees of mo-
tion blur. In Figure 9, we plot average detection accuracy
versus the degree of motion blur (i.e., the kernel size). It
shows that Deep ChArUco is much more resilient to the
motion blur effect compared to the OpenCV approach. Fig-
ure 8 shows an example of increasing motion blur and the
output of both detectors. Both the visual examples and re-
sulting plot show that OpenCV methods start to completely
fail (0% detection accuracy) for kernel sizes of 6 and larger,
while Deep ChArUco only degrades a little bit in perfor-
mance (94% detection accuracy), even under extreme blur.

5.1.2 Synthetic Lighting Test

In the lighting test, we compare both detectors under differ-
ent lighting conditions created synthetically. We multiply
the original image with a rescaling factor of 0.6k to simulate
increasing darkness. In Figure 11, we plot average detection
accuracy versus the darkness degree, k. Figure 10 shows an
example of increasing darkness and the output of both de-

Figure 10. Synthetic Lighting Test Example. Top row: input image applied with a brightness rescaling factor 0.6k with k from 0 to 10;
middle row: corners and ids detected by OpenCV detector with detection accuracy [1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]; bottom row: corners
and ids detected from the Deep ChArUco with detection accuracy [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. ]

tectors. We note that Deep ChArUco is able to detect mark-
ers in many cases where the image is “perceptually black”
(see last few columns of Figure 10). Deep ChArUco detects
more than 50% of the corners even when the brightness is
rescaled by a factor of 0.69 ⇠ .01, while the OpenCV de-
tector fails at the rescaling factor of 0.64 ⇠ .13.

Figure 11. Synthetic Lighting Test. We compare Deep ChArUco
with the OpenCV approach on 20 random images from our test-set
while increasing the amount of darkness.

5.2. Evaluation on real sequences

First, we qualitatively show the accuracy of both detec-
tors in real video clips captured in different scenarios as de-
scribed in section 4.4, “Evaluation Data.” Figure 13 shows
the results of both detectors under extreme lighting and mo-
tion. Notice that the Deep ChArUco detector significantly
outperforms the OpenCV detector under these extreme sce-
narios. Overall, our method detects more correct keypoints
where a minimum number of 4 correspondences is neces-
sary for pose estimation.

In our large experiment, we evaluate across all 26, 000
frames in the 26-video dataset, without adding synthetic ef-
fects. We plot the fraction of correct poses vs. pose correct-
ness threshold (as measured by reprojection error) in Fig-
ure 12. Overall, we see that the Deep ChArUco system
exhibits a higher detection rate (97.4% vs. 68.8% under
a 3-pixel reprojection error threshold) and lower pose er-
ror compared to the traditional OpenCV detector. For each

sequence in this experiment, Table 3 lists the ChArUco de-
tection rate (where ✏re < 3.0) and the mean ✏re.

For sequences at 1 and 0.3 lux, OpenCV is unable to
return a pose–they are too dark. For sequences with shad-
ows, Deep ChArUco detects a good pose 100% of the time,
compared to 36% for OpenCV. For videos with motion blur,
Deep ChArUco works 78% of the time, compared to 27%
for OpenCV. For a broad range of “bright enough” scenar-
ios ranging from 3 lux to 700 lux, both Deep ChArUco and
OpenCV successfully detect a pose 100% of the time, but
Deep ChArUco has slightly lower reprojection error, ✏re on
most sequences.2

5.3. Deep ChArUco Timing Experiments
At this point, it is clear that Deep ChArUco works well

under extreme lighting conditions, but is it fast enough for

real-time applications? We offer three options in network
configuration based on the application scenarios with dif-
ferent requirements:

• ChArUcoNet + RefineNet: This is the recommended
configuration for the best accuracy under difficult con-
ditions like motion blur, low light, and strong imaging
noise, but with longest post-processing time.

• ChArUcoNet + cornerSubPix: For comparable accu-
racy in well-lit environment with less imaging noise,
this configuration is recommended with moderate
post-processing time.

• ChArUcoNet + NoRefine: This configuration is pre-
ferred when only the rough pose of the ChArUco pat-
tern is required, especially in a very noisy environment
where cornerSubPix will fail. The processing time is
therefore the shortest as the image only passes through
one CNN.

We compare the average processing speed of 320⇥ 240
sized images using each of the above three configurations
in Table 2. The reported framerate is an average across the
evaluation videos described in Section 4.4. Experiments are
performed using an NVIDIA R� GeForce GTX 1080 GPU.
Since ChArUcoNet is fully convolutional, it is possible to

2For per-video analysis on the 26 videos in our evaluation dataset,
please see the Appendix.

Figure 12. Deep ChArUco vs OpenCV across entire evaluation
dataset. Pose accuracy vs. reprojection error ✏re threshold is com-
puted across all 26, 000 frames in the 26 videos of our evalua-
tion set. Deep ChArUco exhibits higher pose estimation accuracy
(97.4% vs. 68.8% for OpenCV) under a 3 pixel reprojection error
threshold.

Configurations Approx. fps (Hz)
ChArUcoNet + RefineNet 24.9
ChArUcoNet + cornerSubPix 98.6
ChArUcoNet + NoRefine 100.7
OpenCV detector + cornerSubPix 99.4
OpenCV detector + NoRefine 101.5

Table 2. Deep ChArUco Timing Experiments. We present tim-
ing results for ChArUcoNet running on 320⇥240 images in three
configurations: with RefineNet, with an OpenCV subpixel refine-
ment step, and without refinement. Additionally, we also list the
timing performance of OpenCV detector and refinement.

apply the network to different image resolutions, depending
on computational or memory requirements. To achieve the
best performance with larger resolution images, we can pass
a low-resolution image through ChArUcoNet to roughly lo-
calize the pattern and then perform subpixel localization via
RefineNet in the original high-resolution image.

6. Conclusion
Our paper demonstrates that deep convolutional neu-

ral networks can dramatically improve the detection rate
for ChArUco markers in low-light, high-motion scenarios
where the traditional ChArUco marker detection tools in-
side OpenCV often fail. We have shown that our Deep
ChArUco system, a combination of ChArUcoNet and Re-
fineNet, can match or surpass the pose estimation accu-
racy of the OpenCV detector. Our synthetic and real-
data experiments show a performance gap favoring our ap-
proach and demonstrate the effectiveness of our neural net-
work architecture design and the dataset creation methodol-

Video deep acc cv acc deep ✏re cv ✏re

0.3lux 100 0 0.427 (0.858) nan
0.3lux 100 0 0.388 (0.843) nan
1lux 100 0 0.191 (0.893) nan
1lux 100 0 0.195 (0.913) nan
3lux 100 100 0.098 (0.674) 0.168
3lux 100 100 0.097 (0.684) 0.164
5lux 100 100 0.087 (0.723) 0.137
5lux 100 100 0.091 (0.722) 0.132
10lux 100 100 0.098 (0.721) 0.106
10lux 100 100 0.097 (0.738) 0.105
30lux 100 100 0.100 (0.860) 0.092
30lux 100 100 0.100 (0.817) 0.088
50lux 100 100 0.103 (0.736) 0.101
50lux 100 100 0.102 (0.757) 0.099
100lux 100 100 0.121 (0.801) 0.107
100lux 100 100 0.100 (0.775) 0.118
400lux 100 100 0.086 (0.775) 0.093
400lux 100 100 0.085 (0.750) 0.093
700lux 100 100 0.102 (0.602) 0.116
700lux 100 100 0.107 (0.610) 0.120
shadow 1 100 42.0 0.254 (0.612) 0.122
shadow 2 100 30.1 0.284 (0.618) 0.130
shadow 3 100 36.9 0.285 (0.612) 0.141
motion 1 74.1 16.3 1.591 (0.786) 0.154
motion 2 78.8 32.1 1.347 (0.788) 0.160
motion 3 80.3 31.1 1.347 (0.795) 0.147

Table 3. Deep ChArUco vs OpenCV Individual Video Sum-
mary. We report the pose detection accuracy (percentage of
frames with reprojection error less than 3 pixels) as well as the
mean reprojection error, ✏re, for each of our 26 testing sequences.
Notice that OpenCV is unable to return a marker pose for images
at 1 lux or darker (indicated by nan). The deep reprojection er-
ror column also lists the error without RefineNet in parenthesis.
RefineNet reduces the reprojection error in all cases except the
motion blur scenario, because in those cases the “true corner” is
outside of the central 8⇥ 8 refinement region.

ogy. The key ingredients to our method are the following:
ChArUcoNet, a CNN for pattern-specific keypoint detec-
tion, RefineNet, a subpixel localization network, a custom
ChArUco pattern-specific dataset, comprising extreme data
augmentation and proper selection of visually similar pat-
terns as negatives. The final Deep ChArUco system is ready
for real-time applications requiring marker-based pose esti-
mation.

Furthermore, we used a specific ChArUco marker as an
example in this work. By replacing the ChArUco marker
with another pattern and collecting a new dataset (with
manual labeling if the automatic labeling is too hard to
achieve), the same training procedure could be repeated to
produce numerous pattern-specific networks. Future work
will focus on multi-pattern detection, integrating ChArU-
coNet and RefineNet into one model, and pose estimation
of non-planar markers.
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2. Related Work
2.1. Traditional ChArUco Marker Detection

A ChArUco board is a chessboard with ArUco markers
embedded inside the white squares (see Figure 2). ArUco
markers are modern variants of earlier tags like ARTag [5]
and AprilTag [6]. A traditional ChArUco detector will first
detect the individual ArUco markers. The detected ArUco
markers are used to interpolate and refine the position of
the chessboard corners based on the predefined board lay-
out. Because a ChArUco board will generally have 10 or
more points, ChArUco detectors allow occlusions or par-
tial views when used for pose estimation. In the classi-
cal OpenCV method [7], the detection of a given ChArUco
board is equivalent to detecting each chessboard inner cor-
ner associated with a unique identifier. In our experiments,
we use the 5 ⇥ 5 ChArUco board which contains the first
12 elements of the DICT_5x5_50 ArUco dictionary as
shown in Figure 2.

Figure 2. ChArUco = Chessboard + ArUco. Pictured is a 5x5
ChArUco board which contains 12 unique ArUco patterns. For
this exact configuration, each 4x4 chessboard inner corner is as-
signed a unique ID, ranging from 0 to 15. The goal of our algo-
rithm is to detect these unique 16 corners and IDs.

2.2. Deep Nets for Object Detection
Deep Convolutional Neural Networks have become the

standard tool of choice for object detection since 2015 (see
systems like YOLO [8], SSD [9], and Faster R-CNN [10]).
While these systems obtain impressive multi-category ob-
ject detection results, the resulting bounding boxes are typ-
ically not suitable for pose inference, especially the kind of
high-quality 6DoF pose estimation that is necessary for aug-
mented reality. More recently, object detection frameworks
like Mask-RCNN [11] and PoseCNN [12] are building pose
estimation capabilities directly into their detectors.

2.3. Deep Nets for Keypoint Estimation
Keypoint-based neural networks are usually fully-

convolutional and return a set of skeleton-like points of the

detected objects. Deep Nets for keypoint estimation are
popular in the human pose estimation literature. Since for
a rigid object, as long as we can repeatably detect a smaller
yet sufficient number of 3D points in the 2D image, we can
perform PnP to recover the camera pose. Albeit indirectly,
keypoint-based methods do allow us to recover pose using
a hybrid deep (for point detection) and classical (for pose
estimation) system. One major limitation of most keypoint
estimation deep networks is that they are too slow because
of the expensive upsampling operations in hourglass net-
works [13]. Another relevant class of techniques is those
designed for human keypoint detection such as faces, body
skeletons [14], and hands [15].

Figure 3. Defining ChArUco Point IDs. These three examples
show different potential structures in the pattern that could be used
to define a single ChArUco board. a) Every possible corner has
an ID. b) Interiors of ArUco patterns chosen as IDs. c) Interior
chessboard of 16 ids, from id 0 of the bottom left corner to id 15
of the top right corner (our solution).

2.4. Deep Nets for Feature Point Detection
The last class of deep learning-based techniques relevant

to our discussion is deep feature point detection systems–
methods that are deep replacements for classical systems
like SIFT [17] and ORB [18]. Deep Convolutional Neu-
ral Networks like DeTone et al’s SuperPoint system [16]
are used for joint feature point and descriptor computa-
tion. SuperPoint is a single real-time unified CNN which
performs the roles of multiple deep modules inside earlier
deep learning for interest-point systems like the Learned In-
variant Feature Transform (LIFT) [19]. Since SuperPoint
networks are designed for real-time applications, they are a
starting point for our own Deep ChArUco detector.

3. Deep ChArUco: A System for ChArUco De-
tection and Pose Estimation

In this section, we describe the fully convolutional neu-
ral network we used for ChArUco marker detection. Our
network is an extension of SuperPoint [16] which includes
a custom head specific to ChArUco marker point identifi-
cation. We develop a multi-headed SuperPoint variant, suit-
able for ChArUco marker detection (see architecture in Fig-
ure 4). Instead of using a descriptor head, as was done in
the SuperPoint paper, we use an id-head, which directly re-
gresses to corner-specific point IDs. We use the same point

In this paper, we present Deep ChArUco: 
- A deep convolutional neural network system trained to be 

accurate and robust for ChArUco marker detection under 
extreme lighting and motion and a neural network for 
subpixel corner refinement  

- A novel training dataset collection recipe involving auto-
labeling images and synthetic data generation.

Figure 4: Examples of synthetic 
training patches. Each image is 
24×24 pixels and contains one 
a ground-truth corner within the 
central 8×8 pixel region.

Figure 3: Examples of ChArUco 
dataset, before and after data 
augmentation.

This work demonstrates that deep convolutional neural networks can 
dramatically improve the detection rate for ChArUco markers in low-
light, high-motion scenarios where the traditional ChArUco marker 
detection tools often fail. We have shown that our Deep ChArUco 
system, a combination of ChArUcoNet and RefineNet, is significantly 
more robust to adverse effects such as illumination, blur, and shadows.

[1] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised interest point detection and description,” in CVPR Deep Learning for Visual SLAM Workshop, 2018. [Online]. 
Available: http://arxiv.org/abs/1712.07629 

Introduction

Network Architecture

Training ChArUcoNet

Data augmentation with synthetics effects: 
∙ blur (gaussian, motion, speckle)   ∙ lighting   ∙ homographic transform

Data generation (see Figure 2)

Figure 1: Two-Headed ChArUcoNet and RefineNet. Both ChArUcoNet and 
RefineNet are SuperPoint-like [1] networks using VGG-based backbone:  
• ChArUcoNet: One of the network heads detects 2D locations of ChArUco 

board’s corners and the second head classifies them.  
• RefineNet: takes a 24×24 image patch and outputs a single subpixel corner 

location at 8× the resolution of the central 8×8 region.

Training RefineNet

Figure 5: Synthetic motion blur

Evaluation on synthetic blur/lighting

Figure 6: Synthetic lighting
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Evaluation on real video sequences

Conclusion

Figure 7: Detector performance 
comparison under extreme shadows 
(top) and motion (bottom). 
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Table 1: Individual test video summary of the 
pose detection rate(percentage of frames 
with reprojection error less than 3 pixels) as 
well as the mean reprojection error.

Figure 2: Training data collection


